
J
H
E
P
1
0
(
2
0
0
8
)
1
0
7

Published by IOP Publishing for SISSA

Received: September 8, 2008

Accepted: October 21, 2008

Published: October 29, 2008

Algorithm FIRE — Feynman Integral REduction

A.V. Smirnov∗

Scientific Research Computing Center of Moscow State University,

Institut für Theoretische Teilchenphysik, Universität Karlsruhe,

Wolfgang-Geade-Str. 1, Karlsruhe, Germany

E-mail: asmirnov@rdm.ru

Abstract: The recently developed algorithm FIRE performs the reduction of Feynman

integrals to master integrals. It is based on a number of strategies, such as applying the

Laporta algorithm, the s-bases algorithm, region-bases and integrating explicitly over loop

momenta when possible. Currently it is being used in complicated three-loop calculations.

Keywords: NLO Computations, QCD.

∗Supported by RFBR grant 08-02-01451-a and DFG through SBF/TR 9.

c© SISSA 2008

mailto:asmirnov@rdm.ru
http://jhep.sissa.it/stdsearch


J
H
E
P
1
0
(
2
0
0
8
)
1
0
7

Contents

1. Introduction 1

2. The ordering 3

3. The algorithm 4

4. Proper expressions 5

5. Benchmarks 8

6. Instructions 10

6.1 IBP 10

6.2 QLink 10

6.3 FLink 11

6.4 FIRE 11

6.5 SBases 15

7. Examples 16

8. Advanced topic: usage of regions 19

9. Perspectives 20

1. Introduction

In the framework of perturbation theory quantum field theoretical amplitudes are written

as sums of Feynman integrals that are constructed according to Feynman rules. After

a tensor reduction each Feynman graph generates various scalar Feynman integrals with

the same structure of the integrand but with various powers of propagators (also called

indices):

F (a1, . . . , an) =

∫

· · ·

∫

ddk1 . . . ddkh

Ea1

1 . . . Ean
n

. (1.1)

Here ki, i = 1, . . . , h, are loop momenta and the denominators Er are either quadratic or

linear with respect to the loop momenta pi = ki, i = 1, . . . , h or to the independent external

momenta ph+1 = q1, . . . , ph+N = qN of the graph. Irreducible polynomials in the numerator

can be represented as denominators raised to negative powers. Usual prescriptions k2 =

k2 + i0, etc. are implied and dimensional regularization [1] with d = 4 − 2ε is assumed.

– 1 –



J
H
E
P
1
0
(
2
0
0
8
)
1
0
7

In today’s perturbative calculations, when one needs to evaluate millions of Feynman

integrals (1.1), a well-known strategy is to derive certain relations between Feynman inte-

grals of a given family without calculating them, and then to apply the latter recurrently

in order to find an algorithm that expresses any given Feynman integral as a linear combi-

nation of some master integrals.

There are several types of commonly used relations, but the most important are the

the so-called integration by parts (IBP) relations [2]
∫

. . .

∫

ddk1d
dk2 . . .

∂

∂ki

(

pj
1

Ea1

1 . . . Ean

n

)

= 0 . (1.2)

The derivatives of the scalar products ki · kj and ki · qj can be expressed linearly in terms

of the factors Ei of the denominator, hence one obtains the IBP relations in the following

form:
∑

αiF (a1 + bi,1, . . . , an + bi,n) = 0 , (1.3)

where bi,j are some fixed integers and αi are polynomials in aj . Now one can substitute

all possible (a1, a2, . . . , an) on the left-hand sides of (1.3) and obtain a large number of

relations.

There are several recent attempts to make the reduction procedure systematic, in

particular, the so-called Laporta algorithm [3, 4] (There is a public version named AIR

which implements the algorithm on a computer [5]) and Baikov’s method (see [6, 7] and

chapter 6 of [8]). Another activity in this direction is connected to the use of Gröbner

bases [9]. The first variant of this approach was suggested in [10], where IBP relations

were reduced to differential equations. First attempts to use directly the non-commutative

Gröbner bases in the algebra generated by shift operators were made in [11, 12].

We presented another approach based on Gröbner bases in [13]. More information can

be found in [14] and the algorithm constructing the s-bases has been described in [15]. This

algorithm called SBases is now made public and is available at http://www-ttp.particle.uni-

karlsruhe.de/∼asmirnov/. This paper provides the syntax to use it, however its internal

structure will not be discussed here.

This paper describes the algorithm FIRE, combining a number of ideas from different

existing algorithms. One of the important parts of the algorithm is the use of s-bases (the

original idea of FIRE three years ago was to construct the s-bases in all sectors before the

reduction). However, FIRE can also work in a “pure Laporta mode”, i.e. without using the

s-bases. To run FIRE in this mode one simply requires to provide the IBPs, symmetries

and boundary conditions. However, in practice this part of FIRE is applied only to a small

subset of integrals — the areas where most of the indices are positive are usually done with

the s-bases part and when there are enough negative indices, an explicit integration can

be performed.

Although the paper is devoted to the algorithm FIRE, one also requires some other

codes that are not a part of FIRE. All of them are available at http://www- ttp.particle.uni-

karlsruhe.de/∼asmirnov/, and the needed instructions for their usage are provided. How-

ever, those projects will not be discussed in detail. Both FIRE and those codes are dis-

tributed under the terms of GNU GPLv2.

– 2 –



J
H
E
P
1
0
(
2
0
0
8
)
1
0
7

FIRE can be downloaded directly from http://www-ttp.particle.uni-karlsruhe.de/

∼asmirnov/data/FIRE 3.0.0.m and a package with FIRE and supplementary codes

and binaries is available via http://www-ttp.particle.uni-karlsruhe.de/∼asmirnov/

data/FIRE.tar.gz.

To use all features of FIRE one requires the following codes: FIRE 3.0.0.m1 — the

algorithm FIRE itself, written in Wolfram Mathematica; IBP.m — a small code for creating

IBPs; the SBases 3.0.0.m — the code to construct the s-bases.

To take most out of the code, one should also use the QLink package (the package

also has its own page, http://qlink08.sourceforge.net/) that is used to access the QDBM

database for storing data on disk from Mathematica; and the small FLink tool that allows

to perform external evaluations by means of the Fermat program. The usage of the code

and the related packages will be discussed in section 5.

Let us start with explaining the idea of FIRE. The first step will consist in introducing

an ordering on Feynman integrals.

2. The ordering

As it has been noted in [14], to define master integrals, or irreducible integrals, we need to

choose a certain priority between the points (a1, . . . , an), formally to introduce a complete

ordering on them. Moreover, we are intending to consider integrals corresponding to differ-

ent Feynman diagrams (to use integration over some loop momenta), therefore we actually

need a global ordering on pairs (DN, (a1, . . . , an(DN))), where DN is the diagram number.

We introduce such an ordering in three steps. First of all we enumerate Feynman

diagrams and say that all integrals corresponding to a diagram with a bigger number are

lower than the ones corresponding to a diagram with a smaller one (the ordering will be

denoted with the symbol ≺ and named as lower).

Now let us fix a Feynman diagram and introduce an ordering on integrals corresponding

to it. There are different ways to do that, but surely one is going to choose something

natural, so that the integrals corresponding to the minimal elements in this ordering are

easier to be calculated.

Let us realize that the Feynman integrals are simpler, from the analytic point of view,

if they have more non-positive indices. In fact, in numerous examples of solving of IBP rela-

tions by hand, the natural goal was to reduce indices to zero or negative values. Moreover,

the reduction procedure is often stopped once one arrives at integrals which are already suf-

ficiently simple, in particular, when they can be expressed analytically in terms of gamma

functions for general dimension d. Experience reflected in many papers leads to the natural

idea to decompose the whole region of the integer indices which we call sectors.2

Let us consider the set D with elements {d1, d2, . . . , dn} where all di are equal to 1 or

−1. The elements of this set are called directions. For any direction ν = {d1, . . . , dn} we

1The first version was a private one, while the second version was shared with collaborators.
2This decomposition is also standard within Laporta’s algorithm [3, 4]. Here one applies the word

topology which we tend to avoid because this is an example of a situation where a commonly accepted

mathematical term is used as a slang word to denote something else.

– 3 –



J
H
E
P
1
0
(
2
0
0
8
)
1
0
7

consider the region σν = {(a1, . . . , an) : (ai−1/2)di > 0} and call it a sector. In other words,

in a given sector, the indices corresponding to 1 are positive and the ones corresponding

to −1 are non-positive. Obviously the union of all sectors contains all integer points in the

n-dimensional vector space and the intersection of any two sectors is an empty set. We

will say that a direction {d1, . . . dn} is lower than {d′1, . . . d
′
n} if d1 ≤ d′1, . . . , dn ≤ d′n and

they are not equal.3 The analogue definition is also applied to the corresponding sectors.

Thus, the second natural step is to define that F (a1, . . . , an) ≻ F (a′1, . . . , a
′
n) if the

sector of (a′1, . . . , a
′
n) is lower than the sector of (a1, . . . , an).4

To define an ordering completely we introduce it in some way inside the sectors. Let us

fix a sector σν . Any point in this sector can be written as (a1, . . . , an) = (p1+d1b1, . . . , pn+

dnbn), where (p1, . . . , pn) = ((d1+1)/2, . . . , (dn+1)/2) is the corner point of the sector, and

all bi are non-negative. This sets a one-to-one correspondence φ between points (a1, . . . , an)

of the sector σν and (b1, . . . , bn) ∈ N
n. The latter set is a semi-group (with respect to

(b1, . . . , bn) + (b′1, . . . , b
′
n) = (b1 + b′1, . . . , bn + b′n)). We will say that an ordering on N

n is

linear if

(i) for any a ∈ N
n not equal to (0, . . . 0) one has a ≻ (0, . . . 0)

(ii) for any a, b, c ∈ N
n one has a ≻ b if and only if a + c ≻ b + c.

An ordering on σν will be also named linear if the corresponding ordering on N
n is

linear (we say that φ(x) ≻ φ(y) if and only if x ≻ y). Now the third step is to fix a linear

ordering in every sector.5

3. The algorithm

The idea of FIRE is that at every moment we store the so-called proper expressions of Feyn-

man integrals, meaning that the integral F (a1, . . . , an) is expressed as a linear combination

of integrals that are lower than F (a1, . . . , an).

There are different ways of producing proper expressions for Feynman integrals, that

we will discuss in the next section. Suppose now that there is a way to obtain a proper

expression for any integral. Then the main algorithm looks this way (where Input is the

set of integrals one wants to calculate):

3This is not a complete ordering on directions. In practice one has to be able to compare all directions,

but the choice does not influence the reduction procedure much.
4This is a certain simplification of the ordering used in FIRE, to introduce it completely we have to

introduce the notion of regions and the way to compare them, that will be done in 8.
5All known Laporta algorithms also use the linear orderings. Moreover, the set of linear orderings is big

enough, and only a small subset of those is used in practice.

– 4 –



J
H
E
P
1
0
(
2
0
0
8
)
1
0
7

FIRE

1. RequiredIntegrals=Input

2. While RequiredIntegrals is non-empty

3. Y = RequiredIntegrals[[1]]

4. Remove the first element of RequiredIntegrals

5. Obtain a proper expression for Y as a linear combination

of integrals; we will denote this set with S

6. Take the subset S′ of S containing integrals

that do not yet have proper expressions

7. Unite RequiredIntegrals with S′

8. EndOfWhile

9. Sort the list of all integrals encountered so that

the higher ones are at the beginning of the list.

10.For all elements Y of the list, starting from the end

11. Take the existing proper expression of Y by (X1, . . . ,Xk)

and substitute into it the proper expressions of Xi

12.EndOfFor

13.Return the obtained expression for Input

In other words, we start from an integral, obtain a proper expression for it, look at

the integrals it was expressed by and so on. Since every integral is expressed in terms of

lower integrals, this procedure will stop at some point. Then it will be left to sort the

list and substitute everything backwards. It is worth noting that the length of expressions

does not grow on the substitutions cycle. Indeed, such a length is limited by the number

of irreducible integrals.

But all this was based on being capable of finding proper expressions for integrals (step

5), preferably doing this fast. If one could construct those by a constant amount of time,

then one could expect to reduce any needed integral to master integrals. This can be done

by the use of s-bases. However, currently one can not construct those for all sectors, so a

combination of methods is needed.

4. Proper expressions

There are different sources of proper expressions. The power of FIRE is in using both

traditional sources and at the same time the s-bases technique.

The most commonly used source consists of applying the Laporta algorithm (see [3, 4])

to derive proper expressions from IBP relations [2]. The basic idea of this algorithm is to

fix a sector and start generating IBP relations with different index substitutions. Since

the number of relations grows faster that the number of integrals, at some point the linear

system becomes overdetermined and can be solved.

It is important to note that if the Laporta algorithm is applied in a sector, then we

perform the so-called tail-masking [5] meaning that if an IBP also includes some integrals

– 5 –



J
H
E
P
1
0
(
2
0
0
8
)
1
0
7

from lower sectors then that part is masked and is not substituted anywhere. Otherwise,

the growth of those parts would not let the algorithm work.

Second, one can use the symmetries of the diagram. Typically they have the following

form:

F (a1, . . . , an) = (−1)d1a1+...dnanF (aσ(1), . . . , aσ(n)), (4.1)

where di are fixed and are equal to either one or zero, and σ is a permutation.

Next, one can use boundary conditions, i.e. the conditions of the following form:

F (a1, a2, . . . , an) = 0 when ai1 ≤ 0, . . . , aik ≤ 0 (4.2)

for some subset of indices ij . (In particular, we always have F (a1, a2, . . . , an) = 0, if all ai

are non-positive).

Furthermore, there are the so-called parity conditions, stating that Feynman integrals

should be zero if the sum of some subset of indices is odd.

One more source of proper expressions is the usage of manually-inserted rules. For

example, one might consider several similar diagrams at the same time (which happens

quite often in practice) so that if some indices turn negative, the diagrams become equal.

This relation is provided into the code by inserting the rules manually. One more important

usage of rules is related to the region-bases and will be discussed later.

Now, what can be called a bridge between Laporta and s-bases approaches, is the

direct use of IBP relations. There are too many IBP relations and surely there comes the

question of using them better. One of the ideas is to look at a given integral and try to pick

an IBP such that after substituting certain indices this integral X is the highest one among

the ones in the relation. In this case one would immediately obtain a proper expression

for X.

However, this is not applicable to all integrals. But still, one may consider a sector

and reduce the integrals while possible with this method. Afterwards one can apply the

Laporta algorithm in this sector, however the number of IBPs to be generated becomes

smaller.

The direct usage of IBPs can been replaced in the latest version of FIRE by the usage

of ideas of Lee [16]. Basically, in each sector one may find a single IBP that generates

proper expressions for “most” points in this sector. Accordingly, we might generate less

IBPs because the other IBPs are naturally represented as a linear combination of the ones

we generated. For details see Criterion 3 in [16].

FIRE would loose much of its functionality if it did not use the s-bases approach to the

reduction problem. One can say that an s-basis in a sector is a mechanism of obtaining a

proper expression for any (except for master integrals) integral in this sector by a constant6

amount of time.

The idea of s-bases comes from the above-mentioned direct usage of IBPs. As it has

been said, the initial relations cannot be applied to construct proper expressions directly

for every integral. Therefore one might try to find a better set of relations S, such that for

6Speaking formally, for each s-basis we can specify the maximum number of numerical operations re-

quired to construct a proper expression with the use of this basis.

– 6 –



J
H
E
P
1
0
(
2
0
0
8
)
1
0
7

any integral X (except for master integrals) one might find an element of S and substitute

some indices to obtain a proper expression for X.

To do this one first needs a language to work with relations before substituting the

indices. And that is the language of algebras of operators acting on the field of functions.

The algorithm aimed at constructing the s-bases is close to the Buchberger algorithm.

However, it does not always succeed, and it is a skill to find a good ordering for it to work.

The details on the construction of s-bases can be found in [15].

Finally, let us explain the usage of region-bases. Let us expand the set of directions

D up to the sets of numbers {r1, r2, . . . , rn} where all ri are equal to 1, −1 or 0. For any

ν = {r1, . . . , rn} we consider the set σν = {(a1, . . . , an) : (ai − 1/2)ri ≥ 0} and call it a

region. In other words, in a given region, the indices corresponding to 1 are positive, the

ones corresponding to −1 are non-positive and the ones corresponding to 0 are arbitrary.

With this definition we can turn back to the algorithm description.

Experience shows that s-bases are constructed easily if the number of non-positive

indices in a given sector is small. And if the number of non-positive indices is large, there

is usually a possibility to perform integration over some loop momentum explicitly in terms

of gamma functions for general d. However, to derive the corresponding explicit formulae,

with multiple finite summations, for all necessary cases turns out to be impractical.

In this situation, there is another alternative. Let us distinguish the propagators

(and irreducible numerators) involved in such an explicit integration formula. They are

associated with a subgraph Γ′ of the given graph Γ. Let us solve the IBP relations for the

corresponding subintegral in order to express any such subintegral in terms of some master

integrals. The coefficients in these reduction formulae depend not only on d and given

external parameters but also on the kinematic invariants of Γ which are external for Γ′.

If the highest coefficients of the s-basis are monomials of those kinematic invariants,

the reduction for the Γ′ can be “raised” to the diagram Γ. It turns into a reduction in a

region, where the indices corresponding to Γ\Γ′ are arbitrary.7

After using this reduction procedure, it is sufficient to use explicit integration formulae

only for some boundary values of the indices (corresponding to master integrals of Γ′). This

replacement is very simple, without multiple summations.

Integrals which are obtained from initial integrals by an explicit integration over a loop

momentum in terms of gamma functions usually involve a propagator with a regularization

by an amount proportional to ǫ. FIRE is also applicable in such situations.

In some cases one cannot perform an explicit integration because the diagram contains

a massive-massive or a massive-massless bubble. Still one can reduce the indices on those

lines to (1, 1) or (1, 0) by means of a region basis. Afterwards the diagram might be mapped

to a new diagram with one loop less and containing a so-called heavy point corresponding

to this bubble. The HeavyPoints setting will instruct the code that there is an index whose

value can be only 0 and 1. However, the IBPs for such a diagram should be constructed

manually.

7The usage of regions obviously affects the definition of the ordering. See section 8 for more details.

– 7 –



J
H
E
P
1
0
(
2
0
0
8
)
1
0
7

p4p2 3

2 4

p3p1 1

Figure 1: The massless on-shell box diagram.

Now what FIRE actually does when it needs to construct a proper expression for a

given integral, is

• checking if it is equal to zero by boundary conditions;

• checking if it is equal to zero by parity conditions;

• looking at its symmetry orbit checking if it is not minimal there;

• looking for manual rules to map this integral somewhere;

• constructing a proper expression using an s-basis if there is one in the corresponding

sector (or a region basis if this point lies in a region);

Surely, if FIRE manages to construct a proper expression for the integral by one of

the methods, it does not try the other ones for this integral but moves to other integrals

instead.

For the remaining integrals FIRE launches the Laporta algorithm in the highest sector.

It results in a number of new proper expressions and lower integrals that are to be reduced,

and the procedure is repeated.

5. Benchmarks

Up to the moment of the publication there is only one public Laporta algorithm available,

AIR [5] by Anastasiou and Lazopoulos. Although FIRE is not only a Laporta algorithm, we

had to compare the algorithms in different modes. To avoid problems related to peculiarities

of algorithms, we used a very simple example — the massless on-shell box diagram also

used as an example in [5].

We cannot guarantee that we have found the optimal settings for AIR, however we

did a good effort to try different settings and followed the instructions from [5]. The

following table has the timing for AIR running in four modes (those modes are not any

internal modes of the algorithm, but the sets of settings we used). AIR1 stands for the

basic setting where one provides only the IBPs and boundary conditions. AIR2 uses the

– 8 –



J
H
E
P
1
0
(
2
0
0
8
)
1
0
7

n AIR1 AIR2 AIR3 AIR4 FIRE1 FIRE2 FIRE3 FIRE4

10 28 8 14 9 14 15 6 3

20 227 44 79 47 79 35 19 4

30 1068 166 285 202 131 80 42 8

40 3268 567 1098 624 259 166 88 16

50 14561 2117 2977 2280 672 478 254 34

Table 1: Comparison of FIRE with AIR. n is the maximal number of dots; AIR1 is AIR without

masking; AIR2 is AIR with expression masking; AIR3 is AIR with coefficient masking; AIR4 is AIR

with both types of masking; FIRE1 is the the pure Laporta mode of FIRE; FIRE2 has the options

LeeIdeas and DirectIBP turned on; FIRE3 uses the symmetries; FIRE4 uses pre-constructed

s-bases; see more explanations above.

masking of expressions: to use it one has to provide the list of master integrals. AIR3 uses

the masking of integral coefficients. In this mode AIR does not simplify large coefficients

during the reduction, but substitutes preset numerical values to check whether they are

zero. However, coefficients have to be simplified after the reduction; we included this

routine in the time measurement. AIR4 combines both strategies.

We used FIRE also in four modes. FIRE1 is a pure Laporta mode. FIRE2 has two

options turned on — the LeeIdeas and DirectIBP. FIRE3 uses the symmetries of the

diagram. FIRE4 uses pre-constructed s-bases.

The reduction task in all tests was to reduce all integrals corresponding to the massless

on-shell box diagram with up to n dots (this is the easiest way to compare algorithms).

The setup for both algorithms and the logs can be downloaded from http://www-

ttp.particle.uni-karlsruhe.de/∼asmirnov/data/FIRE-benchmarks.tar.gz

Although one cannot expect to construct the s-bases everywhere, it is always possible

to achieve results much better than the pure Laporta mode by performing some work

before launching the evaluating: by constructing s-bases, region-bases, providing parity

conditions, providing symmetries or inserting rules manually. Moreover, the tests of this

type are unnatural for FIRE since in practice one does not require to reduce all integrals

satisfying a given condition, but a much smaller set; FIRE is optimized for involving less

integrals if possible (especially with the use of s-bases).

To illustrate the potential of FIRE let us describe a problem where FIRE was applied.

It was used to calculate the fermionic contribution to the three-loop static quark poten-

tial [17]. The Feynman diagrams corresponding to this problem had 12 indices each (11

propagators and 1 irreducible numerator). The reduction method included the automatic

construction of the s-bases, but a number of s-bases was constructed manually (by means

of trying different orderings). The region bases were used as well — they allowed to reduce

many cases to 2-loop problems (including those with regularized lines) with 7 indices. The

set of diagrams used during the reduction included 18 3-loop diagrams and 16 2-loop dia-

grams.8 The data file containing all the information on the diagrams in an internal format

had the size of 95 MB. We had to reduce about 70 thousand integrals, and the task was

8We count only the so-called “master-diagrams”.

– 9 –



J
H
E
P
1
0
(
2
0
0
8
)
1
0
7

split into 12 jobs. Those jobs required maximally 2 days, 10 GB of RAM and 15GB on

hard disk (with DatabaseUsage=2, see section 6.4). The reduction included totally about

30 million integrals involved.

6. Instructions

Let us now explain how to use the different computer programs.

6.1 IBP

The file IBP.m is written in Mathematica and is used to create IBPs. To use it, load the

file by Get["IBP.m"]. The following syntax is available:

• Syntax: PrepareIBP[];

Description: solves the system of linear equations obtained after differentiating. But

first one has to give values to the following variables:

– Syntax: Internal;

Description: lists the loop momenta;

Example: Internal={k,l};

– Syntax: External;

Description: lists the external momenta;

Example: External={};

– Syntax: Propagators;

Description: lists the propagators and irreducible numerators;

Example: Propagators={k2-mm,l2-mm,(k-l)2};

• Syntax: IBP[x,y]

Description: produces an IBP obtained after multiplying by y and differentiating by

x;

Example: A 2-loop tadpole with two massive lines and one massless line:

Internal={k,l}; External={}; Propagators={k^2-mm,l^2-mm,(k-l)^2}.

The IBPs are produced by IBP[k,k], IBP[k,l], IBP[l,k] and IBP[l,l].

6.2 QLink

QLink [18] is a package that allows to use the QDBM database [19] from Mathematica.

The program is written mainly in C and uses the Mathlink technology. FIRE can work

either using QLink or not, but for heavy calculations it becomes reasonable to use it, since

otherwise memory problems might be encountered. The knowledge of the QLink syntax is

not required; it is used directly from FIRE.

– 10 –



J
H
E
P
1
0
(
2
0
0
8
)
1
0
7

6.3 FLink

FLink [20] is a tool that allows to perform external evaluations by means of the Fermat

program [21] which is extremely fast in working with polynomials. FIRE can work either

using FLink or not, but the usage of FLink can lead to a speed-up.

6.4 FIRE

FIRE 3.0.0.m is written in Mathematica and is loaded with Get["FIRE 3.0.0.m"]. Let

us list its options and commands:

• Syntax: Prepare[];

Description: converts the information on a diagram into the internal format; to use

this command one has to give values to the following list of variables:

– Syntax: startinglist;

Description: specifies the list of IBPs written in terms of shift and multiplication

operators. This is the same format which is provided by the output of IBP.m.

Obligatory variable;

Example: startinglist={IBP[k,k], IBP[k,l], IBP[l,k], IBP[l,l]};

– Syntax: RESTRICTIONS;

Description: defines the boundary conditions, the list of regions where the in-

tegrals vanish has to be specified; it is important to specify all boundary condi-

tions, including symmetric ones; Obligatory variable;

Example: RESTRICTIONS={{-1,-1,0,0,0},{0,0,-1,-1,-1}};

– Syntax: SYMMETRIES, ODDSYMMETRIES or CONDITIONALSYMMETRIES;

Description: If all the symmetries preserve the sign, one can use the first one and

simply provide a list of possible permutations of indices (no need to include the

identical one). If the sign might be changed, one sets the second one providing

a list of pairs — a permutation and a set of 1s and -1s {s1, . . . , sn}. In this

case a point {a1, . . . , an}, being mapped to a symmetric one, is multiplied by

a product sa1

1 · . . . · san

n . A conditional symmetry is a symmetry that should be

applied only in case some if the indices have a specified sign. In this case one

provides a list of pairs — a permutation and a region; it is important to specify

all symmetries, not only the generators;

Examples: 1) SYMMETRIES={{2,1,3,4,5},{1,2,4,3,5},{2,1,4,3,5}}

2) ODDSYMMETRIES={{{2,1,3,4,5},{1,1,1,1,-1}}}

3) CONDITIONALSYMMETRIES={{{2,1,3,4,5},{0,0,0,-1,0}}};

– Syntax: EVENRESTRICTIONS[list1]=list2;

Description: Specifies a parity condition; list1 can have numbers from

{−1, 0, 1, 2} and list2 can consist only of zeros and ones. The meaning of such a

statement is that if one takes a point {a1, . . . , an}, where the indices correspond-

ing to −1 in list1 are non-positive, the ones corresponding to 1 are positive, the

– 11 –



J
H
E
P
1
0
(
2
0
0
8
)
1
0
7

ones corresponding to 0 are equal to zero and the remaining ones are arbitrary,

then the sum of indices corresponding to 1 in list2 should be even, otherwise

the integral is equal to zero. Setting the parity restrictions is non-obligatory;

there might be multiple parity conditions for a diagram;

Example: EVENRESTRICTIONS[{2,2,-1}]={1,1,0} means that if the last index

is non-positive, then the sum of the first two should be even;

– Syntax: RegLine and RegLineShift;

Description: Instructs the code that one of the diagram lines is regularized

(corresponding to a propagator with a non-integer index). The standard shift

is assumed to be (4 − d)/2, but one can use any other value by setting the

RegLineShift variable;

Example: RegLine=5; RegLineShift=4-d;

– Syntax: HeavyPoints;

Description: The HeavyPoints option, if set, should list the indices correspond-

ing to heavy points; see section 4 for details;

Example: HeavyPoints={3};

Example: see section 7;

• Syntax: SaveStart[file without extension]

Description: Saves the information on a diagram on disk. Should be used after

successfully running the Prepare[] command;

Example: SaveStart["box"] writes to box.start;

• Syntax: LoadStart[file without extension,pn];

Description: Loads the information on a diagram from a file. A problem number pn

should be specified. It should be an integer from 1 to 999;

Example: LoadStart["box",1] loads from box.start;

• Syntax: LoadSBases[file without extension,pn];

Description: Loads an s-bases file. Those files are produced by the SBases code (see

section 6.5) and contain the same information as the start files plus a set of s-bases

constructed for some sectors or regions;

Example: LoadSBases["box",1] loads from box.sbases;

• Syntax: RULES[pn,region]:=G[pn,x ]:>...;

Description: The rules should be prescribed after loading a start file or an s-bases file.

A more convenient method is to put them in a file with the same name as the start or

s-bases file, but ending with .rules instead of .start or .sbases. In this case the

rules will be loaded automatically. Such a rule means that if one takes a point in a

region, then the right-hand side of the rule should be applied to this point. It can be,

– 12 –



J
H
E
P
1
0
(
2
0
0
8
)
1
0
7

for example, an expression of the form G[pn,x ]:>If[x===y,something,G[pn,x].

This will be a rule for a special value of x, in all other cases it will be ignored. If

all the regions encountered in the rules are sectors, there is nothing more required to

make those rules work. Otherwise one has to specify the list of all possible regions.

The syntax will be explained in section 8;

Example: RULES[1,{-1,1,0}]:=G[1,{x1,x2,x3}]:>G[1,{x2,x1,x3}] is an alter-

native way of setting a symmetry between sectors;

• Syntax: CreateProblem[pn,n];

Description: A fast way to add a diagram where you are not going to use anything

but rules. n stands for the number of indices;

Example: CreateProblem[2,5];

• Syntax: Burn[];

Description: This command should be executed after loading or preparing all start

files, s-bases files and rules. The command performs some internal optimizations and

enumerations allowing to speed-up the algorithm. Burn[] can work slowly at high

dimensions (especially if one uses multiple diagrams);

• Syntax: SaveData[file];

Description: Saves the internal data produces by the Burn[] command in a file. This

file contains the information on all diagrams and some internal data and should not

be edited manually;

Example: SaveData["all.data"];

• Syntax: LoadData[file];

Description: Loads the data from the file. One does not require to run the Burn[]

command after loading the data, however no more diagrams can be added at this

moment;

Example: LoadData["all.data"];

• Syntax: F[pn,{a1, . . . , an}];

Description: The main command to evaluate the integral from diagram number pn

and indices {a1, . . . , an}. The answer comes as a linear combination of terms looking

like G[pn,{a′1, . . . , a
′
n}]. This means completely the same as F , but it is an internal

convention, that G is something that is left unevaluated and F makes the algorithm

work;

Example: F[1,{2,3,0,-4}];

• Syntax: SaveTables[File(obligatory), IntegalList(non-obligatory),

SaveSymmetric(non-obligatory)];

– 13 –



J
H
E
P
1
0
(
2
0
0
8
)
1
0
7

Description: Saves the tables produced during the evaluation in a file. The integral

list can be missing, in this case all tables are saved. This option is not recommended

and can result in memory overflow; and in real problems one will need only thousands

of values, while there can be millions and more stored in tables. The SaveSymmetric

option is assumed to be False, but if it is True, the tables for symmetric integrals

are also saved. This might be useful and save time if one did a long computation

of integrals, that are not minimal in their symmetry orbits, and might need the

symmetrical integrals later;

Example: SaveTables["1.tables",{{1,{2,3,0,-4}},{1,{2,3,0,-3}}}];

• Syntax: LoadTables[File] or LoadTables[FileList];

Description: Loads the tables from a file or a list of files. Please keep in mind that

one cannot run this command twice without quitting the kernel or do a calculation

and then load some tables. This is done for the reason that same integrals might

have different numbers in different calculations and it is not easy to combine them

together. However, the LoadTables[FileList] syntax gives all the functionality one

needs. For example, if one has done an evaluation and now wants to load some tables,

one can first save the contents of the memory, quit the kernel, then load the tables

together;

Example: LoadTables["1.tables"];

• Syntax: ClearTables[];

Description: Clears the tables from memory.

• Syntax: EvaluateAndSave[ListOfIntegrals,FileForTables];

Description: The alternative mode “evaluate and save” to use FIRE. In this mode

the code performs a cleanup regularly that allows a real memory economy. However,

this cleanup makes impossible to work with the code after the evaluation is over, so

it is best to use this mode in batch jobs, where one loads the initial data and gives a

command to evaluate and save the integrals; afterwards the job should be terminated;

Example: EvaluateAndSave[{{1,{2,3,0,-4}},{1,{2,3,0,-3}}},"1.tables"];

• Let us now list the options that FIRE has.

– UsingIBP: usually set to True, but if switched to False turns the Laporta part

off. Only possible if s-bases are available;

– DatabaseUsage: a number between 0 and 3, determines how heavily the QDBM

database should be used;

– QLinkPath: should be set properly to use the database, must point at the QLink

program;

– DataPath: should be set properly to use the database; the code creates up to

four directories with the path starting at DataPath, each of those being a QDBM

database;

– 14 –



J
H
E
P
1
0
(
2
0
0
8
)
1
0
7

– UsingFermat: a setting indicating whether the Fermat program is used for

substitutions;

– FLinkPath: should be set properly to use Fermat, must point at the FLink

program;

– FermatPath: should point at the Fermat program in order to use it;

– DirectIBP (available in version 3.0.1): if true, the code uses IBPs directly as if

it is an s-basis, see section 4;

– LeeIdeas: if true, the code omits some of the IBPs according to the ideas of

Lee [16].

6.5 SBases

SBases 3.0.0.m is the code used to construct the s-bases. It is written in Mathematica

and is loaded simply with Get["SBases 3.0.0.m"]. The underlying algorithms are not a

subject of this paper, however, we will provide the usage instructions (still all details of

basis construction are worth a separate paper and cannot be covered here).

To use the SBases, one needs to create a start file or load it the same was as it has

been done for the FIRE algorithm. Now one has the following syntax:

• : Syntax: BuildBasis[region,ordering];

Description: Tries to construct an s-basis in the specified region with the given

ordering. The ordering should be an n × n non-degenerate positive-definite matrix.

The usage of region-bases (in case when the region is different from a sector) is a

special subject that is discussed in section 8; If the code succeeds in constructing a

basis, it prints the “Evaluation successful” message and a summary on the expected

master integrals. It is worth noting that finding a proper ordering to construct a

basis might be a difficult task and requires a certain skill in complicated situations.

Example: BuildBasis[{1, 1, 1, 1},{{1, 1, 1, 1},{1, 1, 1, 0},{1, 1, 0, 0},{1, 0, 0, 0}}];

• : Syntax: BuildBasis[sector];

Description: Try to use the random ordering mode to try and construct a basis. The

random mode is supported only for sectors;

Example: BuildBasis[{1, 1, 1, 1}];

• : Syntax: Info[region];

Description: Provide the information on sectors contained in the specified region;

Example: Info[{0, 0, 0, -1}];

• : Syntax: Info[region,True];

Description: Same as Info[region] but with a listing of sectors;

Example: Info[{0, 0, 0, -1},True];

– 15 –



J
H
E
P
1
0
(
2
0
0
8
)
1
0
7

• : Syntax: BuildAll[region];

Description: launches an automatic attempt to build the s-bases in all sectors con-

tained in the specified region. The algorithm is bases on trying to find a single

element and an ordering such that this element produces proper expressions for all

integrals in the given sector. Hence this command might produce the s-bases only in

the sectors that have no master integrals. Anyway this might be a good addition to

the Laporta algorithm;

Example: BuildAll[{0, 0, 0, -1}];

• : Syntax: SaveSBases[file without extension];

Description: saves the s-bases to a file;

Example: SaveSBases["box"] writes to box.sbases.

• Syntax: F[{a1, . . . , an}];

Description: To verify how a basis works right after constructing it, one can run the

Burn[] command and F[{a1, . . . , an}] without specifying the problem number;

Example: F[{2,3,0,-4}];

7. Examples

Our first example is a massless on-shell box diagram (figure 1) .

Input 1:

Get["FIRE 3.0.0.m"];

Get["IBP.m"];

Internal = {k};

External = {p1, p2, p4};

Propagators = {-k2, -(k + p1)
2, -(k + p1 + p2)

2, -(k + p1 + p2 + p4)
2};

PrepareIBP[];

reps = {p2
1 →0, p2

2 →0, p2
4 →0, p1p2 →s/2, p2p4 → t/2, p1p4 →-(s+t)/2}

startinglist = {IBP[k, k], IBP[k, p1], IBP[k, p2], IBP[k, p4]}/.reps;

RESTRICTIONS={{-1,-1,0,0},{0,-1,-1,0},{0,0,-1,-1},{-1,0,0,-1}};

SYMMETRIES = {{3, 2, 1, 4}, {1, 4, 3, 2}, {3, 4, 1, 2}};

Prepare[];

SaveStart["box"];

Burn[];

Output 1:

FIRE, version 3.0.0

UsingIBP: True

UsingFermat: False

Prepared

– 16 –



J
H
E
P
1
0
(
2
0
0
8
)
1
0
7

q2

q1

1

3

6

2

5 4

Figure 2: A diagram contributing to the 2-loop massless quark formfactor.

Dimension set to 4

Saving initial data

Now the code is ready to work with the box diagram in the Laporta mode. Simply

run something like F[{2, 2, 2, 2}] to get the answer.

To build the s-bases one has to load SBases 3.0.0.m and run the following commands:

BuildBasis[{1,1,1,1},{{1,1,1,1},{1,1,1,0},{1,1,0,0},{1,0,0,0}}];

BuildBasis[{-1,1,1,1},{{1,1,1,1},{1,1,1,0},{1,1,0,0},{1,0,0,0}}];

BuildBasis[{1,-1,1,1},{{1,1,1,1},{1,1,1,0},{1,1,0,0},{1,0,0,0}}];

BuildBasis[{-1,1,-1,1},{{1,1,1,1},{1,1,1,0},{1,1,0,0},{1,0,0,0}}];

BuildBasis[{1,-1,1,-1},{{1,1,1,1},{1,1,1,0},{1,1,0,0},{1,0,0,0}}];

Afterwards the evaluation will go faster than in the Laporta mode.

A more complicated example: a diagram contributing to the two-loop massless quark

formfactor (figure 2).

Input 1:

Get["SBases 3.0.0.m"];

Get["IBP.m"];

Internal = {k, l};

External = {q1, q2};

Propagators = {(l + q1)
2, (k + q1)

2, (l - q2)
2,

l2, (k - l)2, (k - q2)
2, k2};

PrepareIBP[];

reps={q2
1 → 0, q2

2 → 0, q1 q2 → -QQ/2};

startinglist = {IBP[k, k], IBP[k, k-l], IBP[k, k+q1], IBP[k, k-q2],

IBP[l, l], IBP[l, l-k], IBP[l, l+q1], IBP[l, l-q2]}/.reps;

– 17 –



J
H
E
P
1
0
(
2
0
0
8
)
1
0
7

SYMMETRIES = {{3, 6, 1, 4, 5, 2, 7}};

RESTRICTIONS = {{-1, -1, 0, 0, 0, 0, 0}, {0, 0, -1, 0, 0, -1, 0},

{-1, 0, 0, 0, -1, 0, 0}, {0, -1, 0, 0, -1, 0, 0},

{0, 0, -1, 0, -1, 0, 0}, {0, 0, 0, 0, -1, -1, 0},

{0, -1, 0, 0, 0, -1, 0}, {-1, 0, -1, -1, 0, 0, 0}};

Prepare[];

Output 1:

SBases, version 3.0.0

UsingIBP: True

UsingFermat: False

Prepared

Dimension set to 7

In this example we demonstrate the automatic construction of s-bases. First of all, let

us list the sectors:

Input 2:

Info[{0, 0, 0, 0, 0, 0, -1}]

Output 2:

Sectors in the area :64

Non-trivial sectors in the area :17

Non-trivial sectors up to a symmetry in the area :11

Bases built in 0 sectors

Rules exist in 0 sectors

Nothing in 11 sectors

The last index is always non-positive for the reason that it corresponds to an irreducible

numerator. One can see that we have provided enough information for the code to avoid

considering trivial sectors and to identify symmetrical sectors. Now let us construct most

s-bases automatically:

Input 3:

BuildAll[{0, 0, 0, 0, 0, 0, -1}];

We skip the output. Let us repeat the information command. Now we will give it with

the True option forcing the code to produce more output:

Input 4:

Info[{0, 0, 0, 0, 0, 0, -1}, True]

Output 4:

– 18 –



J
H
E
P
1
0
(
2
0
0
8
)
1
0
7

Sectors in the area :64

Non-trivial sectors in the area :17

Non-trivial sectors up to a symmetry in the area :11

Bases built in 7 sectors

Rules exist in 0 sectors

Nothing in 4 sectors

2 additional minuses

{{-1,1,-1,1,1,1,-1}}

{{1,1,1,-1,-1,1,-1}}

{{-1,1,1,1,1,-1,-1},{1,-1,-1,1,1,1,-1}}

3 additional minuses

{{-1,1,1,-1,1,-1,-1},{1,-1,-1,-1,1,1,-1}}

Each of the lines in the sector listing stands for a set of symmetrical sectors, where

one has no s-bases constructed. The remaining sectors are likely to have master integrals.

One might try to construct the bases there manually.

8. Advanced topic: usage of regions

The regions were introduced into the code to be able to perform integration over loop

momenta explicitly. Consider a subset of indices I and the corresponding region ν =

{a1, . . . , an} where ai is nonzero if and only if i ∈ I. One tries to perform a reduction to

masters only considering the indices in I as shift operators and the others as coefficients.

Afterwards the indices in I can have only a finite number of values (corresponding to

master integrals of the subdiagram), so a rule can be created mapping those integrals to a

diagram with less indices and loops.

This approach affects both the basis construction and the reduction. However the most

important difference is that the global ordering has to be changed in a way. The reason is

that the sectors inside σν cannot be compared normally; instead, the active indices (the

ones in I) should be compared as normal, and the passive indices (the remaining) can be

changed in an arbitrary manner.

To make things even more complicated, we should keep in mind that there might be

different regions defined at the same time corresponding to different subdiagrams. There-

fore we had to change the definition of an ordering. After fixing a problem we define the

set of regions in this problem (the syntax is SBasisM[pn]). The order of regions in this list

is important: the regions going later are supposed to be lower. Moreover, for each point

A = {p1, . . . , pn} we consider the set of regions it lies in and define the maximum region

number (rA) as the maximum position number for those regions inside the SBasisM[pn]

(for a point that is contained in no regions we say that rA = 0). Now we say that if rA < rB

then B is lower than A and vice versa. The points with rA = 0 are compared in the stan-

dard way. Now let us consider two points with equal nonzero maximal region numbers.

First of all, the active index values are taken and are compared in the standard way. Next,

if those coincide, we have to consider the passive indices, which may be of any sign. Hence

– 19 –



J
H
E
P
1
0
(
2
0
0
8
)
1
0
7

the sectors corresponding to this subset of indices are considered and compared. Finally if

the points lie in the same subsector, they are compared with the use of the ordering.

This approach has the following implications: first, we have to define a unique ordering

for each region, and this ordering has to be specific: the active indices have to be “more

important” than the passive ones. Hence the ordering matrix should be of a “block shape”:

the first k = number of active indices rows can have non-zero numbers only in the columns

corresponding to the active indices, the following rows can have non-zero numbers only in

the columns corresponding to the passive ones.

Now, having chosen such an ordering, one can try to construct a region basis with the

BuildBasis[region,ordering] command.

The second implication is that one should not be able to reduce a point inside a region

to a point not lying in a region with a greater number. This could happen if some of the

active indices turned negative (from the positive value inside the region) and there were

no region there. Hence we require that the points of that type should either correspond to

integrals vanishing by the boundary conditions, or lie in a “parallel region” (with the same

set of zeros in the definition) having a greater number.

9. Perspectives

The beta-version of FIRE has been applied to a family of three-loop Feynman integrals nec-

essary for the analysis of decoupling of c-quark loops in b-quark HQET [22]. Furthermore,

the algorithm itself has been used to calculate the fermionic contribution to the three-loop

static quark potential [17]. FIRE has also been used to crosscheck some of the integrals in

a paper [23] where four-loop vacuum integrals have been evaluated.

The current version of the FIRE algorithm allows to perform difficult calculations in-

volving millions of integrals. One of the possible improvements in the future is to reproduce

some parts of the algorithm in C to increase the productivity and enable the parallelization.

Acknowledgments

I am grateful to V.A. Smirnov for giving me this brilliant possibility to work on the re-

duction of Feynman integrals, — without a person knowing physics well and applying the

code constantly on real examples (and finding numerous bugs) I would never be able to

result in a reasonably powerful code.

Special thanks to M. Steinhauser for the collaboration on evaluating the three-loop

static quark potential, for testing the code for a long time and for reading the drafts of my

paper.

I would like to thank M. Tentioukov for consulting me on the Laporta algorithm, as

well as on the help on coding in C for Linux and the gateToFermat library.

I would also like to thank K.G. Chetyrkin, A. Maier, P. Maierhoefer, P. Marqaurd

and A.G. Grozin for our joint work on different physical problems resulting in additional

functionality of FIRE covering the specifics of those problems.

– 20 –



J
H
E
P
1
0
(
2
0
0
8
)
1
0
7

And of course I would like to thank the Institute for Theoretical Particle Physics of

the University of Karlsruhe for the hospitality it offers and the powerful machines required

for running the code.

The work has been supported by RFBR grant 08-02-01451-a and DFG through

SBF/TR 9.

References

[1] G. ’t Hooft and M.J.G. Veltman, Regularization and renormalization of gauge fields, Nucl.

Phys. B 44 (1972) 189;

C.G. Bollini and J.J. Giambiagi, Dimensional renormalization: the number of dimensions as

a regularizing parameter, Nuovo Cim. B12 (1972) 20.

[2] K.G. Chetyrkin and F.V. Tkachov, Integration by parts: the algorithm to calculate

β-functions in 4 loops, Nucl. Phys. B 192 (1981) 159.

[3] S. Laporta, High-precision calculation of multi-loop Feynman integrals by difference

equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033].

[4] T. Gehrmann and E. Remiddi, Two-loop master integrals for γ∗ → 3 jets: the planar

topologies, Nucl. Phys. B 601 (2001) 248 [hep-ph/0008287]; Two-loop master integrals for

γ∗ → 3 jets: the non-planar topologies, Nucl. Phys. B 601 (2001) 287 [hep-ph/0101124].

[5] C. Anastasiou and A. Lazopoulos, Automatic integral reduction for higher order perturbative

calculations, JHEP 07 (2004) 046 [hep-ph/0404258].

[6] P.A. Baikov, Explicit solutions of the 3-loop vacuum integral recurrence relations, Phys. Lett.

B 385 (1996) 404 [hep-ph/9603267]; Explicit solutions of the multi-loop integral recurrence

relations and its application, Nucl. Instrum. Meth. A389 (1997) 347 [hep-ph/9611449]; A

practical criterion of irreducibility of multi-loop Feynman integrals, Phys. Lett. B 634 (2006)

325 [hep-ph/0507053].

[7] V.A. Smirnov and M. Steinhauser, Solving recurrence relations for multi-loop Feynman

integrals, Nucl. Phys. B 672 (2003) 199 [hep-ph/0307088].

[8] V.A. Smirnov, Evaluating Feynman integrals, Springer, Berlin Germany (2004).

[9] B. Buchberger and F. Winkler, Gröbner bases and applications, Cambridge University Press,

Cambridge U.K. (1998).

[10] O.V. Tarasov, Reduction of Feynman graph amplitudes to a minimal set of basic integrals,

Acta Phys. Polon. B29 (1998) 2655 [hep-ph/9812250]; Computation of Gröbner bases for

two-loop propagator type integrals, Nucl. Instrum. Meth. A534 (2004) 293 [hep-ph/0403253].

[11] V.P. Gerdt, Gröbner bases in perturbative calculations, Nucl. Phys. 135 (Proc. Suppl.) (2004)

232 [hep-ph/0501053].

[12] V.P. Gerdt and D. Robertz, A Maple package for computing Gröbner bases for linear

recurrence relations, arXiv:cs/0509070.

[13] A.V. Smirnov and V.A. Smirnov, Applying Gröbner bases to solve reduction problems for

Feynman integrals, JHEP 01 (2006) 001 [hep-lat/0509187].

[14] A.V. Smirnov and V.A. Smirnov, S-bases as a tool to solve reduction problems for Feynman

integrals, Nucl. Phys. 160 (Proc. Suppl.) (2006) 80 [hep-ph/0606247]; On the reduction of

Feynman integrals to master integrals, PoS(ACAT)085 [arXiv:0707.3993].

– 21 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB44%2C189
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB44%2C189
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUCIA%2CB12%2C20
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB192%2C159
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA15%2C5087
http://arxiv.org/abs/hep-ph/0102033
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB601%2C248
http://arxiv.org/abs/hep-ph/0008287
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB601%2C287
http://arxiv.org/abs/hep-ph/0101124
http://jhep.sissa.it/stdsearch?paper=07%282004%29046
http://arxiv.org/abs/hep-ph/0404258
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB385%2C404
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB385%2C404
http://arxiv.org/abs/hep-ph/9603267
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUIMA%2CA389%2C347
http://arxiv.org/abs/hep-ph/9611449
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB634%2C325
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB634%2C325
http://arxiv.org/abs/hep-ph/0507053
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB672%2C199
http://arxiv.org/abs/hep-ph/0307088
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APPOA%2CB29%2C2655
http://arxiv.org/abs/hep-ph/9812250
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUIMA%2CA534%2C293
http://arxiv.org/abs/hep-ph/0403253
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C135%2C232
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C135%2C232
http://arxiv.org/abs/hep-ph/0501053
http://arxiv.org/abs/cs.SC/0509070
http://jhep.sissa.it/stdsearch?paper=01%282006%29001
http://arxiv.org/abs/hep-lat/0509187
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C160%2C80
http://arxiv.org/abs/hep-ph/0606247
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(ACAT)085
http://arxiv.org/abs/0707.3993


J
H
E
P
1
0
(
2
0
0
8
)
1
0
7

[15] A.V. Smirnov, An algorithm to construct Gröbner bases for solving integration by parts

relations, JHEP 04 (2006) 026 [hep-ph/0602078].

[16] R.N. Lee, Group structure of the integration-by-part identities and its application to the

reduction of multiloop integrals, JHEP 07 (2008) 031 [arXiv:0804.3008].

[17] A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Applying Mellin-Barnes technique and

Gröbner bases to the three-loop static potential, PoS(RAD COR 2007)024 [arXiv:0805.1871];

Evaluating the three-loop static quark potential, to appear in Nuclear Physics B (Proc.

Suppl.), arXiv:0807.0365;

A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Fermionic contributions to the three-loop

static potential, Phys. Lett. B 668 (2008) 293 [arXiv:0809.1927].

[18] A.V. Smirnov, QLink — Open-source program, http://qlink08.sourceforge.net.

[19] M. Hirabayashi, QDBM — Open-source program, http://qdbm.sourceforge.net.

[20] A.V. Smirnov and M. Tentioukov, FLink — Open-source program,

http://www-ttp.particle.uni-karlsruhe.de/∼asmirnov/

[21] R.H. Lewis, Fermat — Shareware program, http://home.bway.net/lewis/.

[22] A.G. Grozin, A.V. Smirnov and V.A. Smirnov, Decoupling of heavy quarks in HQET, JHEP

11 (2006) 022 [hep-ph/0609280].

[23] A. Maier, P. Maierhofer and P. Marqaurd, The second physical moment of the heavy quark

vector correlator at O(α3

s
), Phys. Lett. B 669 (2008) 88 [arXiv:0806.3405].

– 22 –

http://jhep.sissa.it/stdsearch?paper=04%282006%29026
http://arxiv.org/abs/hep-ph/0602078
http://jhep.sissa.it/stdsearch?paper=07%282008%29031
http://arxiv.org/abs/0804.3008
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(RAD COR 2007)024
http://arxiv.org/abs/0805.1871
http://arxiv.org/abs/0807.0365
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB668%2C293
http://arxiv.org/abs/0809.1927
http://qlink08.sourceforge.net
http://qdbm.sourceforge.net
http://www-ttp.particle.uni-karlsruhe.de/~asmirnov/
http://home.bway.net/lewis/
http://jhep.sissa.it/stdsearch?paper=11%282006%29022
http://jhep.sissa.it/stdsearch?paper=11%282006%29022
http://arxiv.org/abs/hep-ph/0609280
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB669%2C88
http://arxiv.org/abs/0806.3405

